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ABSTRACT

This paper introduces a new approach to coding ultrasound video, the intended application being very low bit rate

coding for transmission over low cost phone lines. The method exploits both the characteristic noise and the quasi- periodic
nature of the signal. Data compression ratios between 250:1 and 1000: l are shown to be possible, which is sufficient for
u-ansmission over ISDN and conventional phone lines. Preliminary results show this approach to be promising for remote

ultrasound examinations.
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1 INTRODUCTION

Ultrasound video is a very cost effective diagnostic modality, and thus is widely used throughout this country and

the world. Although ultrasound equipment is often available in rural and remote cornets of the country, specialists to

interpret data ate typically in short supply in these locations. With the interest and support in telemedicine, the notion of

having specialists perform ultrasound examinations at remote locations via electronic data exchange is very attractive. In
the absence of channel bandwidth constraints, such an approach is straightforward, with high potential benefits related to

providing immediate care and lowering overall expense. Unfortunately, many of these remote locations do not have access
to or cannot afford to use high capacity channels (such as T1 lines) to interface with large well-staffed urban medical centers

where such specialists reside.

In the presence of channel bandwidth constraints, this approach is encumbered by the large volume of data associated

with digital video. Effective compression of the ultrasound prior to transmission will allow this data transfer to occur. The

key is to achieve sufficient compression with aca3eptable reconstruction quality at rates compatible with telephone and ISDN
lines. In this work we consider ultrasound video of the heart, where the remote examination involves a specialist at a remote

location guiding the attending practitioner by telephone. A critical part of this examination is obtaining proper positioning

of the ultrasound probe, so that a diagnosis can be made. The Iransmitted video quality standards for positioning purposes
are clearly not as stringent as those for diagnosis. If positioning quality can be achieved, then higher quality video can be

transmitted in a.non-real time mode for diagnosis. Of course we hope to eventually be able to transmit diagnostic quality

ultrasound in real time, but this not yet in reach." Regardless, the approach outlined above is a marked improvement in terms

of accuracy and speed over sending video tapes by courier.
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The target goals imply compression ratios in the range from 250:1 to 1000:1. An obvious first line of attack on this

problem is to investigate to what extent spatial and temporal sampling (i.e. frame size and frame rate) can be decimated
without significantly impairing the quality. This has the advantage of being attractive computationally. Based on feedback
from the Medical College of Georgia, a 4:1 reduction in spatial resolution to a size of 256 x 256 was judged to be acceptable.

However, the full 30 f/s frame rate was recommended, particularly for pediatric cardiology where the heart rates are often

very high.

Conventional coding methods such as H.261 and MPEG are not well suited to ultrasound video. The data rates tend to

be too high and they have difficulty representing the high frequency information in the input. Model-based methods on the
other hand are known for high compression ratios but suffer typically from variegated performance behavior over a wide

variety of inputs.

In this paper, we introduce a model-base_l method that provides both high compression and robust behavior. To meet the

difficult compression requirements imposed by the telephone bandwidth, it is important to identify and exploit all available

properties of the signal and preserve with fidelity those parts of the signal that are important for expert analysis. In the
case of ultrasound video in cardiology, for example, cardiologists must be able to see the shape of the walls, the shape and

thickness of the valves and the tissue texture. By taking into account the nature of the noise/texture associated with the

ultrasound images and identifying the important components (wall boundaries, valves, e:c.), we formulated a visual model

that can be used for very low bit rate coding.

2 SYSTEM DESCRIPTION

The components of the proposed coding system are outlined in Figure 1. First, each input frame t,,_j is decomposed

nonlinearly into two components: a lowpass component, which is denoted by ln,ij ; and a highpass or texture component,

tn,i_, where n is the frame number, i is the row number, and j is the column number. The decomposition is based on a

signal model and is optimized empirically such that the iowpass component contains most of the information needed for

diagnosis, such as the contours of walls and valves. The highpass component contains information about the texture of the
tissue being examined. The non-linear subband decomposition (upon which we elaborate later) is shown as the first block

in Figure 1. After the decomposition, the Iowpass component is then decimated in i and j to the Nyquist rate. Signal coding

is then performed using an optimized subband coding method recently developed in the digital signal processing laboratory

at Georgia Tech. I Some details of this method are presented in a later section.

The lower branch of the system contains the texture information. It is decimated in the temporal domain and encoded

using an in-house version of entropy-constrained residual scalar quantization. 2 The two encoded components are then time-

multiplexed into the narrowband telephone channel for transmission to the remote location. At the receiver, the channel

signals are demultiplexed and the individual components are decoded. The lowpass component is then upsampled and

interpolated spatially to restore it to is proper size and the texture component is upsampled temporally to the original frame
rate. After the components are restored, they are combined the 2-D nonlinear synthesis section to form the reconstructed

video. In the next sections, we take a closer look at the individual operations shown in the block diagram in Figure 1.

3 NONLINEAR SUBBAND DECOMPOSITION

Two particular characteristics of the ultrasound video signal support the idea of using the model-based decomposition.

Ftrst, ifa static tissue is examined, the ultrasound image c_ be interpreted as the product of a luminance lowpass component,

representing the intensity of the ultrasonic wave in the vicinity of the examined tissue, and a constant reflectance component,

representing the reflection coefficients associated with the tissue. Second, ultrasound images are typically very noisy..
Usually, additive noise models are used to describe the effect of noise in images. Filtering out the noise could enhance the
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images, but more important it makes the image easier to code. If the noise has a gaussian distribution then a linc_ filter is
optimal for maximizing the signal-to-noise ratio. In our case, however, the goal is to maximize the subjective quality of the

iowpass component.

Thus two approaches can be considered: an additive model and a multiplicative model. A model formulation that covers
both additive and multiplicative variates is depicted in Figure 2. It is similar in nature to the homomorphic model pioneered

by Stockham 3 for the purpose of image enhancement.

The filter H(w), shown in Figure 2, is a lowpass filter with a cutoff frequency of wc = _/Di. The nonlinear

decomposition is then described by the equation

zn,_ = _l'- m(_(t,_,_,j)+ _(t,_,_)).
t.

This decomposition is equivalently a nonlinear suhhand decomposition. The nonlinearity W(-) is chosen to be of the form

'r(z) = _°.

For/3 = 1 and _ = 1, W(.) is the identity mapping and we obtain the additive model. For a = 0.231, W(z) = B log(x) in

the range 0 to 255, and we obtain the multiplicative model.

The parameter/_ was chosen so that z and W(z) have the same dynamic range, i.e. from 0 to 255. The parameter a
was chosen empirically to optimize the subjective performance. Qualitatively, we want the lowpass component to contain
as much useful detail as possible, while keeping constant the cutoff frequency of the filter H (w). To quantify this criterion,

we could try to minimize the difference between l,_._a and z,_,_.j to address the aforementioned goal. Similarly, we could
try to minimize the energy in the texture tn,_j. This ensures that the amount of information contained in the texture is not
significant. We have measured these quantities for values of c, in the range 0.1 < a < 2 for a sample set of ultrasound
images and the results are summarized in Figure 3. The graph (a) shows the dependency of the mean square difference
between l,_,ij and xn,__ and the graph Co)shows the dependency of the energy of t,_,i_ on the parameter _.

We can see that the two criteria are conflicting, and a compromise between them is needed. The value o, = 0.231 that

implies an approximately logarithmic mapping is in the range of values that provide a good tradeoff between the two criteria.
Therefore, the multiplicative model is a reasonable model to use for the encoding of ultrasound images.

The additive and multiplicative models are compared in Figure 6. A sample original ultrasound image is presented

together with the reconstructed images obtained by using the additive (a = 1) and multiplicative (a = 0.231) models. We
can see that the multiplicative model has improved subjective appearance.

Because this decomposition is similar to the homomorphic luminance-reflectance decomposition introduced by Stock-
ham 3 in the context of image enhancement, we can also hope to be able to introduce some image enhancement capability
to the ultrasound images. In fact, the system is constructed with this feature. Unlike Stockham's approach where different

gains are imposed on the two components, we perform histogram modification of the iowpass component. This provides
greater flexibility for enhancement. The histogram mmsformation used in this paper is nonlinear and has the profile shown
in Figure 4. It was observed experimentally that the features most difficult to preserve during encoding are represented in
the low and medium amplitude range of the lowpass component. Thus, contrast modification in this region is expected to

enhance perceived quality. Preliminary results indicate that this is true. At this point enhancement aresults have not been
evaluated by medical specialists, but hopefully will be by the time of the conference presentation.

4 LOWPASS COMPONENT CODING

Taking into account the way the iowpass component ln,_j was obtained, it can be represented by v_(ln,ij), which is a
handlimited signal with a cutoff frequency of w/Di in both horizontal and vertical directions. Therefore, _(i,_,_j) can be
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decimatedbyDI inbothhorizontal and vertical directions without loss of information due to aliasing. Since the mapping

q'(.) is one-to-one and onto, l,_,_ can be decimated and reconstructed. By coding the decimated version of/,_,_j, the net

bit rate can be reduced dramatically.

One of the front-running image coding techniques is subband coding. 4_ It refers to a broad class of systems where

the input is decomposed into subband images and the subband images are coded for transmission or storage. In this work,

an new optimized subband image coder is employed. I This particular subband coding system consists of decomposing
the iowpass component into 16 uniform subbands using the All two-band analysis filters introduced in reference [6].

The implementation can be made very efficient computationally by using specially designed recursive filters that require no

multiplication operations) The subbands are then quantized using entropy-constrained multistage quantizers with intra-bancl

and inter-band conditioning.

This subband coding system is described in detail in references [1] and [2]. Hence our discussion of this part of the coder

is brief. Let it suffice to say that the subband coder is based on encoding each subband pixel (one quantization stage at a

time) using conditional entropy coding. The conditioning is based on the quantized symbol values in the local neighborhood

of the pixel and in corresponding locations across the subbands. Conditional entropy coding of this form allows statistical

dependencies within and across subbands to be used to our advantage.

In addition however, we also extend the conditioningto include corresponding pixels in previous frames. Implementation

complexity limits the number of conditioning symbols that can be used practically, which is unfortunate. Therefore only
the most statistically important conditioning symbols are used (the precise number being fixed a priori by implementation

constraints). For a fixed number'of conditioning symbols, an algorithm that finds the location of conditioning symbols such

that the overall entropy is minimized is described in. _

Conditioning on previous frames is reasonable since there is a lot of correlation between consecutive frames, especially
after the noise has been filtered out in the nonlinear subband decomposition stage. This conditioning scheme is described in

Figure 5, where only spatial conditioning is depicted. Lnter-subband and inter-stage conditioning are not shown in the figure
for clarity resons. Solid lines represent intra-frame conditioning and dashed lines represent inter-frame conditioning. Note
that this conditioning scheme requires a large number of previous frames to be buffered. However, this is not a big problem

in our case, because the frames are small (64 by 64 pixels).

This type of conditioning for cardiology ultrasound video can be used to exploit the fact that the image sequence is

quasiperiodic, with a period given by the heartbeat rate. Therefore, we can use conditioning based on symbols from the
frame located one heartbeat period before the current frame. A couple of techniques can be used for estimating the heartbeat

period. Ideally, we would choose the value that minimizes the average codeword in the current frame. This method is

computationally intensive. A simpler method is to use for conditioning the flame that minimizes the difference between
itself and the current frame. However, ultrasound machine outputs often provide the EKG signal explicitly. Thus the

simplest way is to extract the period directly from the accompanying EKG.

5 TEXTURE CODING

The texture component is a valuable part of the coded signal in the sense that it contributes to the natural appearance of

the reconstructed image. However, much of this texture component is just random noise. One can postulate that the texture

of the tissue in the examined region is the same for a relatively long period of time, except when the sensor device is in

motion, and additive noise contributes most to the rapid time variations in the signal statistics. A simple approach to encode
the texture component is to decimate it in the temporal dimension. A texture frame is then only encoded and Uansmitted

once every Dt frames. At the receiver, the same decoded texture frame is used for the synthesis of Dt consecutive frames.

For large values of Dr, this method may produce an unpleasant effect of static texture. In order to reduce this effect and

to have a more subjectively realistic decoded video sequence, two consecutively mmsmined texture frames may be used
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Figure 5: The inter-frame and intra-frame conditioning scheme

alternatively. Alternating between these two texture frames every 1/30 seconds is an improvement but the flicker effects are

too strong. Further subjective improvement is achieved by switching between them every two or three 1/30 second periods.

Experiments have shown that the best subjective quality is obtained when we switch texture frames every three iowpass

component frames.

The same entropy-constrained quantization technique is used to encode the texture. The only difference is that condi-

tioning is realized only with respect to neighboring pixels and neighboring subbands. This is becamse there is no significant

correlation between textures D2 frames apart.

6 EXPERIMENTS AND RESULTS

If the iowpass component is encoded at RI bits per pixel and the texture at R2 bits per pixel, the overall bit rate in bits

per second is given by

/'256 x 256Ri 256 x 256R. ) .R= 30 D, ' + D2 '

The lowpass component spatial decimation factor D: can be equal to 8 if the coding system is used for positioning only, 4
if we need diagnostic quality, and 2 or even 1 if we implement a multiresolution system allowing zooming in the area of

interest. The texture component temporal decimation factor is in the range 25 to 40.

In Figure 7 we present an original ultrasound image (a), the corresponding iowpass component Co), the reconstructed

image (c), and the reconstructed image with contrast enhancement (d). Enhancement has been performed using the histogram

Iransformafion depicted in Figure 4 with the parameters L = 170 and f(L) = 210.

The parameters used for e_coding are Dl = 4, D-z = 60, R! = 0.45, R2 - 0.25. The overall bit rate is then

R = 55kbps + 8kbps = 63kbps, so this example can be used for ffansmission over an ISDN line. We have used a uniform

64-subband decomposition, and a quantize_ having six stages and two code vectors per stage.

Encoded video segments will be presented at the oonference.
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Figure 6: (a) original ultrasound image Co) rvcons_cted image with Kklidve model (c) n_on$_¢_! image with multi-
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Figure 7: Encod_ images at Rn = 0.45bpp and R2 = 0.25bpp.


